Archive

Posts Tagged ‘EMRS 2012’

Little known heterostructures “compound alkaline electrolyte – electron conductor”: hydroxide ion as a proton acceptor and an electrochemically active species

January 3rd, 2012 1 comment

Yu. M. Baikov, E. I. Nikulin, B. T. Melekh, L. G. Baikova

 

The family of complex materials such as crystalline hydrates and solid eutectics, on the base of hydroxides of alkaline metals (Na, K, Rb, Cs) has been studied thoroughly from the general physico-chemical point of view. However, the high proton conductivity of the members of this family has been revealed on for the last few years. Correspondingly there was no information on the electrochemical activity of heterostructures “alkaline proton | electron conductor”. In our opinion the crucial reason for this objectionable approach of world ionic community to whole alkaline-hydroxide-family was due to dramatic history of arising and then falling of interest in individual alkaline hydroxides. The key aim of the paper is to present our results of the development of solid and molten hydroxide materials which are good proton conductors at intermediate / room temperatures (450 < T < 250K) and low-humidity or even anhydrous conditions, as well as are electrochemically active in MEA with Ti, TiFe, Sn and Si. The main experimental results and informal discussions on necessary further progress in fundamental understanding of the underlying proton conduction mechanisms are collected now on website http://www.solidionic.com.

Tags:

Hydrogen and oxygen species in mass and charge transport across and along interfaces of novel electrolytes on the base of alkaline hydroxides

January 3rd, 2012 1 comment

Authors : Yu. M. Baikov, E. I. Nikulin, B. T. Melekh, V. A. Klimov

“Old” isotopic methods, namely both isotopic exchange (IsEx) and isotopic effect(IsEff), are the effective characterization technique at the study of interface and surface processes at different length scales. Factually, they are in-situ techniques of significant importance at the study of mass and charge transport across and along interfaces of recently discovered ionic conductors on the base of alkaline hydroxides, namely crystalline KOH·H2O (Tmelt=146°C) and KOH·2H2O (Tmelt=42°C) as individual compounds and solid eutectic NaOH+KOH (ENaK) (Tmelt=185°C). See http://www.solidionic.com. The isotopic technique supplied to traditional physico- and electrochemical techniques is factually phenomenological modelling for a deeper understanding of the underlying transport and reactivity mechanisms. We present the results of the study of IsEff (H<=>D) of both the conductivity and EMF of the heterojunction electrode|protonics as well as IsEx “gas-electrolyte” and “electrode-electrolyte”. The rate of IsEx “gas(H2)-a.m.electrolytes” was compared with the exchange-current on the interface “TiHx(or PdHy)| a.m.electrolytes”. The main conclusions are following. i)The mobility of hydrogen species is higher along internal interfaces than across them in the microheterogenic ENaK. ii) The reality of hydrogen heterojunction has been confirmed. iii) The surface of hydroxides itself can activate the molecular hydrogen.

Tags: